
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/357455710

Exploring the association between street built environment and street vitality

using deep learning methods

Article  in  Sustainable Cities and Society · December 2021

DOI: 10.1016/j.scs.2021.103656

CITATIONS

2
READS

294

3 authors, including:

Some of the authors of this publication are also working on these related projects:

BIM-based quantity takeoff enhancement View project

Walkability, urban planning View project

Yunqin Li

Osaka University

6 PUBLICATIONS   7 CITATIONS   

SEE PROFILE

Nobuyoshi Yabuki

Osaka University

247 PUBLICATIONS   1,241 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Yunqin Li on 13 January 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/357455710_Exploring_the_association_between_street_built_environment_and_street_vitality_using_deep_learning_methods?enrichId=rgreq-48520be0ec71dee4749d0dd776eb337f-XXX&enrichSource=Y292ZXJQYWdlOzM1NzQ1NTcxMDtBUzoxMTExNzM0NzQ4MjE3MzQ4QDE2NDIwNjk2Mjc4MTY%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/357455710_Exploring_the_association_between_street_built_environment_and_street_vitality_using_deep_learning_methods?enrichId=rgreq-48520be0ec71dee4749d0dd776eb337f-XXX&enrichSource=Y292ZXJQYWdlOzM1NzQ1NTcxMDtBUzoxMTExNzM0NzQ4MjE3MzQ4QDE2NDIwNjk2Mjc4MTY%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/BIM-based-quantity-takeoff-enhancement?enrichId=rgreq-48520be0ec71dee4749d0dd776eb337f-XXX&enrichSource=Y292ZXJQYWdlOzM1NzQ1NTcxMDtBUzoxMTExNzM0NzQ4MjE3MzQ4QDE2NDIwNjk2Mjc4MTY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Walkability-urban-planning?enrichId=rgreq-48520be0ec71dee4749d0dd776eb337f-XXX&enrichSource=Y292ZXJQYWdlOzM1NzQ1NTcxMDtBUzoxMTExNzM0NzQ4MjE3MzQ4QDE2NDIwNjk2Mjc4MTY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-48520be0ec71dee4749d0dd776eb337f-XXX&enrichSource=Y292ZXJQYWdlOzM1NzQ1NTcxMDtBUzoxMTExNzM0NzQ4MjE3MzQ4QDE2NDIwNjk2Mjc4MTY%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yunqin-Li?enrichId=rgreq-48520be0ec71dee4749d0dd776eb337f-XXX&enrichSource=Y292ZXJQYWdlOzM1NzQ1NTcxMDtBUzoxMTExNzM0NzQ4MjE3MzQ4QDE2NDIwNjk2Mjc4MTY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yunqin-Li?enrichId=rgreq-48520be0ec71dee4749d0dd776eb337f-XXX&enrichSource=Y292ZXJQYWdlOzM1NzQ1NTcxMDtBUzoxMTExNzM0NzQ4MjE3MzQ4QDE2NDIwNjk2Mjc4MTY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Osaka_University?enrichId=rgreq-48520be0ec71dee4749d0dd776eb337f-XXX&enrichSource=Y292ZXJQYWdlOzM1NzQ1NTcxMDtBUzoxMTExNzM0NzQ4MjE3MzQ4QDE2NDIwNjk2Mjc4MTY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yunqin-Li?enrichId=rgreq-48520be0ec71dee4749d0dd776eb337f-XXX&enrichSource=Y292ZXJQYWdlOzM1NzQ1NTcxMDtBUzoxMTExNzM0NzQ4MjE3MzQ4QDE2NDIwNjk2Mjc4MTY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nobuyoshi-Yabuki?enrichId=rgreq-48520be0ec71dee4749d0dd776eb337f-XXX&enrichSource=Y292ZXJQYWdlOzM1NzQ1NTcxMDtBUzoxMTExNzM0NzQ4MjE3MzQ4QDE2NDIwNjk2Mjc4MTY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nobuyoshi-Yabuki?enrichId=rgreq-48520be0ec71dee4749d0dd776eb337f-XXX&enrichSource=Y292ZXJQYWdlOzM1NzQ1NTcxMDtBUzoxMTExNzM0NzQ4MjE3MzQ4QDE2NDIwNjk2Mjc4MTY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Osaka_University?enrichId=rgreq-48520be0ec71dee4749d0dd776eb337f-XXX&enrichSource=Y292ZXJQYWdlOzM1NzQ1NTcxMDtBUzoxMTExNzM0NzQ4MjE3MzQ4QDE2NDIwNjk2Mjc4MTY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nobuyoshi-Yabuki?enrichId=rgreq-48520be0ec71dee4749d0dd776eb337f-XXX&enrichSource=Y292ZXJQYWdlOzM1NzQ1NTcxMDtBUzoxMTExNzM0NzQ4MjE3MzQ4QDE2NDIwNjk2Mjc4MTY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yunqin-Li?enrichId=rgreq-48520be0ec71dee4749d0dd776eb337f-XXX&enrichSource=Y292ZXJQYWdlOzM1NzQ1NTcxMDtBUzoxMTExNzM0NzQ4MjE3MzQ4QDE2NDIwNjk2Mjc4MTY%3D&el=1_x_10&_esc=publicationCoverPdf


UN
CO

RR
EC

TE
D

PR
OO

F

Sustainable Cities and Society xxx (xxxx) 103656

Contents lists available at ScienceDirect

Sustainable Cities and Society
journal homepage: www.elsevier.com/locate/scs

Exploring the association between street built environment and street
vitality using deep learning methods
Yunqin Li, Nobuyoshi Yabuki ⁎, Tomohiro Fukuda
Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

A R T I C L E  I N F O

Keywords:
Street vitality
Built environment
Pedestrian behavior and preference
Scene classification
Semantic segmentation
Multiple object tracking

A B S T R A C T

Street vitality has become an essential indicator for evaluating the attractiveness and potential of the sustainable
development of urban blocks, and it can be reflected by the type and the frequency of people's pedestrian activi-
ties on the street. While it is recognized that street built environment features affect pedestrian behavior and
street vitality, quantifying the impact of these characteristics remains inconclusive. This paper proposes an auto-
mated deep learning approach to quantitatively explore the association between the street built environment and
street vitality. First, we established a deep learning model for street vitality classification for automatic evalua-
tion of street vitality based on the volumes and activities of pedestrians in the street through multiple object
tracking and scene classification. Then, we applied semantic segmentation to measure five selected vitality-
related street built environment variables. Finally, a linear regression model was applied to evaluate the built en-
vironment variables’ significance and effects on street vitality. To verify our method's accuracy and applicability,
we selected a commercial complex in Osaka as an illustrative example. The experimental results highlight that
street width and transparency have significant positive effects on street vitality. Compared with traditional meth-
ods, our approach is feasible, reliable, transferable, and more efficient.

1. Introduction

Since the 1960s, with a rethinking of modern urban planning domi-
nated by functional zoning, there has been a growing emphasis on di-
verse and vibrant urban spaces (Zeng et al., 2018). Vibrant cities and
streets enhance the happiness of residents and social cohesion
(Mouratidis & Poortinga, 2020; Zhang et al., 2021a). Urban street vital-
ity has become an important indicator for assessing the attractiveness
and potential of urban neighborhoods for sustainable development
(Jacobs, 1961; Maas, 1984). However, with the development of urban
traffic and the impact of virtual space, the social function of the street is
gradually encroached by the traffic function, pedestrians are marginal-
ized or introduced into the indoor environment, and the street space
faces the crisis of gradually losing vitality or even decay (Zeng et al.,
2018). As the physical and social space of human activities, the built en-
vironment of urban streets has close connections with urban vitality
(Yue et al., 2021). Many design theories have been proposed to create a
vibrant urban street space and a growing body of methodological and
empirical research has been conducted on the role of relevant physical
environment variables, such as street interface continuity, greening ra-
tio, ground floor interface transparency, and commercial density, in

fostering street activities and vitality (Buchanan, 1988; Gehl & Svarre,
2013; Lopes & Camanho, 2013; Montgomery, 1998; Sung & Lee, 2015;
Zeng et al., 2019; Zhang et al., 2021a).

For a long time, there have been two perspectives on interpreting
the concept of urban vitality: urban sociology and architecture. Urban
sociology generally holds that economic, social, and cultural vitality are
all intertwined in urban vitality, and urban spatial vitality is the spatial
representation of economic, social, and cultural activities (Xia et al.,
2020). In contrast, architects believe that urban space vitality can be
understood as a kind of urban activity based on the form of urban space
and can be created through design approaches (He et al., 2019; Marcus,
2010). The street built environment itself cannot form vitality directly
but provides a place for hosting and influencing people's activities. In
other words, urban vitality is an isomorphism of spatial characteristics
and the social activities behind them, and spatial morphological charac-
teristics could affect the intensity and complexity of pedestrians’ activi-
ties, especially the intensity of optional activities defined by Gehl
(1987). In recent years, research on urban spatial vitality has gradually
become joint. More scholars believe that urban spatial vitality can be
understood as a kind of urban activity based on urban spatial form
(Lees, 2010). In this paper, street vitality concerns mainly its social vi-
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Fig. 1. The framework of the study.

Fig. 2. Segmentation testing samples for (a) DeepLabv3+ and (b) WEEK 3-Facade parsing.
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tality and is related to street spatial characteristics. It can be measured
by the intensity and complexity of activities reflected in the type and
frequency of activities people do on the street.

Previous works on street vitality and physical indicators of the street
built environment are usually qualitative and descriptive studies, in-
cluding questionnaire surveys, field surveys, and cognitive maps (Sung
& Lee, 2015), or macro-scale studies based on geographic, sociological,
and statistical methods (Zeng et al., 2018). Data collection and analysis
on the characteristics of the built environment and the pedestrian activ-
ity level are time-consuming and labor-intensive. For example, Gehl
and Svarre (2013) public space public life (PSPL) survey, one of the typ-
ical subjective perception and observation assessment methods based
on field investigation, was limited by observation time and the number
of observers. Moreover, most macro-scale studies have addressed only a
single environmental variable for its impact on street vitality, and it is
also difficult to determine which of the multiple variables are more im-
portant in promoting spatial vitality (Xia et al., 2020; Zhang et al.,
2021a).

Recent advances in deep learning and big data technologies have
brought about a paradigm shift in street vitality and physical indicators
of the street built environment (Dong et al., 2021; Sulis et al., 2018).
The increasing popularity of urban geographical information system
(GIS) data and point of interest (POI) data facilitates the acquisition of
basic information on urban streets and building functions, providing
better conditions for large-scale measurement of the built environment.
Owing to the implementation of deep learning algorithms for image
processing, the street physical environment captured by remote-sensing

images and street view images can now be further quantified (Li et al.,
2020). Gong et al. (2018) and Yin and Wang (2016) validated the feasi-
bility of using semantic segmentation and Google Street View images in
measuring sky, tree, building, and other landscape features in the
streetscape. Hu et al. (2020) proposed an image scene classification
method with a multitask deep learning model and street view images to
classify urban canyons accurately.

Additionally, the development of deep convolutional neural
networks (CNNs) has further stimulated the interest in image
content analysis. Image-sensing data allow for the measurement
and visualization of people's behaviors, movements, and prefer-
ences with low cost but high accuracy. A wide range of com-
puter vision applications in the automated analysis of video or
image data has proven useful in macro-scale studies (Quintanar
et al., 2021; Zhang et al., 2021b). It is widely accepted that in
micro-scale studies, there needs to be a more comprehensive
understanding of how pedestrians negotiate space (Dziedzic et
al., 2019). For example, Hou et al. (2020) used video-based sur-
veillance to record people's activity data, counting and gridding
people in a common area to provide a new way to track and
quantify how small public spaces are used. Angah and Chen
(2020) analyzed construction worker activities using image
sensing data through a multiple-object tracking (MOT) model.
Liang et al. (2020) visualized pedestrian trajectories using video
recordings and analyzed how weather and climate affect pedes-
trian walking speed. However, these initial explorations con-
centrated more on quantitatively evaluating people's behaviors,

Fig. 3. Technology roadmap of the DLM-SVC model for the street vitality evaluation.

3

https://doi.org/10.1016/j.autcon.2020.103308
https://doi.org/10.1016/j.autcon.2020.103308


UN
CO

RR
EC

TE
D

PR
OO

F

Y. Li et al. Sustainable Cities and Society xxx (xxxx) 103656

Fig. 4. Examples of pedestrian counting from high-position camera and low-position camera using multiple-object tracking.

and rarely addressed human behavioral choices and their inter-
actions with the built environment.

In this study, we propose a new approach that applies state-of-the-
art deep learning-based computer vision techniques to automatically
evaluate the association between street vitality and the street built envi-
ronment quantitatively. Using scene classification and MOT for video
analysis based on-site auditing could help classify the intensity of
pedestrian activity and examine pedestrian preferences in the physical
world. Semantic segmentation for processing street view images makes
the quantitative street built environment measurement possible. The
purposes of this study are to (1) build a quantitative measurement
method for the vitality-related street built environment features, in-
cluding street width, greenery, openness, transparency, and commer-
cial density; (2) develop an evaluation framework for the vitality of
street space, integrating activity-based and pedestrian number-based
vitality assessment using video-image data and deep learning; and (3)
analyze the association between street vitality level and the street built
environment features quantitatively.

The rest of the manuscript is organized as follows. Section 2 explains
our research methods framework and details. Section 3 conducts an em-
pirical study on the streets of a commercial complex as a test of our pro-
posed methods. Section 4 summarizes our findings and contributions
and discusses the feasibility and limitations of our methodology, and
Section 5 concludes remarks.

2. Methodology

In this study, we define street vitality as the intensity of pedestrian
activity, including the intensity and complexity of the activities trig-

gered and provided by pedestrians. To achieve our research goal, we
build a research framework (Fig. 1) of automatically quantifying the re-
lationship between street vitality and the street built environment con-
taining three main parts. First, we analyze the street built environment
variables related to street vitality by combining GIS analysis and se-
mantic segmentation. Second, we propose a deep learning model for
street vitality classification (DLM-SVC) based on the intensity of pedes-
trian behavior and pedestrian volume. The DLM-SVC model includes
two parts: an activity-based model using scene classification and a
pedestrian number-based model using multiple object tracking. In the
activity-based model, a classification hierarchy is designed using an an-
alytic hierarchy process (AHP) and questionnaire. Third, a linear re-
gression model is introduced to explore the internal correlation be-
tween the street built environment variables and street vitality.

2.1. Variables of the street built environment and street vitality

2.1.1. Variables of the street built environment
A number of researchers have confirmed the link between

various built environment features and pedestrian spatial per-
ception. Gehl (1987) found that the width and length of the
street, the diversity of the interface, the flow of motor vehicles,
and the difference between indoor and outdoor heights all have
different degrees of influence on pedestrian activity. Ewing et
al. (2015) investigated the correlation between twenty
streetscape features and pedestrian traffic volumes, and found
three significant influential features, specifically transparency,
active street frontage, and street furniture. A study of Copen-
hagen's shopping streets further pointed out the direct link be-

4
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Fig. 5. Classification hierarchy for pedestrian activities of activity-based model.

Table 1
Activity type weightings for classification hierarchy of activity-based model.
Activity type Walking Sitting Standing Others

Weight 13.620% 28.238% 22.257% 35.886%

Table 2
Characterization of individuals in the questionnaire survey.
Demographics Group Frequency Percent

Gender Male 59 52.2%
Female 54 47.8%

Education Bachelor 34 30.0%
Master 63 55.8%
Doctor 16 14.2%

Major Architecture 42 37.2%
Urban planning 32 28.3%
Landscape planning 21 18.5%
Environment engineering 18 16.0%

tween the built environment and spatial dynamics, which in-
cludes the number of stores, boundary transparency, street level
units, and the functional mix of street-level buildings (Gehl et
al., 2006). Zhang et al. (2020) also studied the influence of the
built environment on pedestrian activity in three aspects: trans-
parency, permeability, and façade elements. Based on these
studies, the present paper selects five easily quantifiable fea-
tures of the built environment, namely, street width, greenery,
openness, transparency, and commercial density, to investigate
their association with street vitality.

Street width is a key impact variable of street-level commercial
and social activities. An appropriate street width combined with street
furniture arrangements helps to enrich the variety and amount of
pedestrian activities. It has been explicitly stated in many urban street

design guidelines to ensure pedestrian activities (Ewing et al., 2015).
Greenery affects pedestrians’ thermal comfort and sense of safety. A
street space rich in greenery can increase pedestrians’ desire to stay
(Ewing et al., 2013). The degree of street openness has a positive im-
pact on the social activities on the street. A relatively open street in-
terface means the walkers can see more of the sky, which promotes so-
cial activities. Open spaces with space penetration tend to become
nodes of social activities on the street and places for people to rest and
communicate (Yin & Wang, 2016). Transparency is the ratio of the
area of building openings to the wall area at the street interface. In
contrast to the wall interface, which can act as a view blocker, street
windows allow for interaction between the inside building activity
and the street activity. A transparent ground floor interface is an open
interface that deepens and adds layers to the street interface to a cer-
tain extent. Many researchers have found that building ground inter-
face transparency is important in shaping excellent pedestrian street
spaces (Ewing et al., 2015; Gehl et al., 2006). Commercial density is
one of the influential primary variables of commercial activity that ac-
tivates the street ground interface. Some research found that a higher
commercial density results in more frequent and varied pedestrian ac-
tivities (Gehl & Svarre, 2013).

2.1.2. . Variables of street vitality
Because the core of street vitality reflects the people engaged in var-

ious activities on the street, including how often and how they use the
streets, the street vitality evaluation should include both the volume
and activity of pedestrians. We take the total number of pedestrians per
unit time on a street segment as the pedestrian volume of pedestrian
number-based activity. In addition, we introduced a classification hier-
archy of the activity-based vitality to evaluate the complexity of pedes-
trians’ activities. This classification hierarchy is based on the propor-
tion of pedestrian activities of each type and helps to eliminate signifi-
cant differences in the absolute number and total behavior of pedestri-
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Fig. 6. Region maps of study area.

ans between street segments caused by differences in traffic conditions
and business patterns.

2.2. Data collection

A set of new data were collected to comprehensively evaluate the
street built environment, including road data from OpenStreetMap
(OSM), street view images from Google Street View, and POI data from
Google Maps in the study area with the help of a corresponding API.
When acquiring street view images from websites, we captured street
view images in four directions (0, 90, 180, and 270 deg) at each sam-
pling point of each street segment. The lateral images are then con-
verted into panoramic images via skybox images and used for further
analysis. In addition, we also collect some panorama images from a
360-deg panorama camera at a height of 2 m as a supplement for places
without Street View image data.

To create a collection of street vitality classification maps with a
wider range of categories, we first have to take video recordings of sev-
eral streets in different places for a period of time as primary data. The
video information contains detailed and realistic spatial and temporal
information about pedestrian behavior and the built environment,
which is valuable for classifying the street vitality. The video data are
used in two deep learning tasks: scene classification and MOT. Accord-
ing to the specific needs of the scene classification work, the installation
of the photographic device should be parallel to the street façade so that
the movement and behavior of each pedestrian can be identified. In the
MOT task, to improve the calculation accuracy, when installing our
cameras, we sought to simplify the video scene and reduce the back-
ground complexity to avoid interference with object detection and
tracking, such as glass window reflections, merchandise models, and
occlusion by large obstacles. The installation height of the camera also
matters, because high-position cameras are prone to the problem of fo-
liage blocking the field of view, while low-position cameras are prone
to the problem of foreground pedestrian blocking the rear pedestrian
when there is a high flow of people. Depending on the site conditions
and traffic density in the study area, we can set up multiple cameras at
different heights and points for video data collection. The recorded
videos are then converted and filtered into images by setting a time in-
terval, which helps minimize image load while ensuring that the results
reflect diverse street scenes and continuous pedestrian movement.

2.3. Street built environment measurement

Five impact variables (street width, greenery, openness,
transparency, and commercial density) are selected for street
built environment evaluation from the literature. Street width

and commercial density measurement are achieved in GIS using
the geoprocessing function. Street width is the ratio of the total
area to the length of the street segment. Commercial density
refers to the number of entrances and exits per 20 m of commer-
cial units in a street segment (Ye et al., 2018). In the small-scale
study, the commercial density calculation with 20 m as the unit
can moderately cover the commercial information and avoid
the duplications and missing of data. For calculation of green-
ery, openness, and transparency, we used semantic segmenta-
tion and object detection methods with street-view images. All
the street-view images are interpreted as color groups using se-
mantic segmentation models, enabling the calculation of each
physical component's pixels. In the greenery and openness cal-
culation, the DeepLabv3+ model (Chen et al., 2018) with the
Cityscapes dataset are used and 19 physical components are ob-
tained, such as roads, sidewalks, buildings, walls, vegetation,
terrain, and sky. In the transparency calculation, the WEEK 3-
Facade parsing model (Liu et al., 2020) with eTRIMS, ECP, and
Paris Art Deco datasets are used. To boost the model perfor-
mance, a region proposal generator based on object detection
method is included in the WEEK 3-Facade parsing model. Physi-
cal components such as windows, walls, and doors can be better
segmented. The percentages of each component in the dataset
are summarized. Then the percentage of trees as greenery (Eq.
(1)), the sky ratio as enclosure (Eq. (2)), and the sum of win-
dow-to-wall and door-to-wall ratio as transparency (Eq. (3)) are
used for evaluation. Fig. 2 shows a testing sample of these two
segmentation models.

(1)

(2)

(3)

Here, is the number of greenery pixels in image , is the num-
ber of sky pixels in image , is the number of window pixels in im-
age , is the number of door pixels in image , is the number of
wall pixels in image , and is the total number of pixels in image .

2.4. Street vitality evaluation and the DLM-SVC model

In recent years, deep learning-based models have been applied in a
variety of fields with great success, including image recognition, object

6
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Fig. 7. (a) Distribution of 12 street segments and (b) 16 shooting locations in the study area.

detection and tracking, and image scene segmentation. Inspired by
these works, we propose a DLM-SVC model that includes a pedestrian
number-based model and an activity-based model that is capable of in-
ferring street vitality from two different aspects: pedestrian numbers
and pedestrian activity classification (Fig. 3). First, we need to record
videos during survey time in street segments according to the data col-
lection rules in Section 2.2. Then, these videos are converted into im-
ages at certain time intervals as raw data of the DLM-SVC model. Fi-
nally, these input images are used in number-based model and activity-
based model for street vitality evaluation.

2.4.1. Pedestrian number-based model
We use MOT to evaluate pedestrian number-based vitality based on

a Faster R-CNN detector, enabling detection, tracking, and ID record-
ings of multiple objects of interest in a video simultaneously. The stan-
dard approach in MOT is tracking by detection, which usually includes
four parts: detection, feature extraction or motion prediction, affinity,
and association (Ciaparrone et al., 2020).

The MOT model “Tracktor++” we used was based on deep features
proposed by Bergmann et al. (2019) and presented well in most of the
easy tracking scenarios. Tracktor++ is a new tracking paradigm that
converts an object detector to a tractor and exploits a CNN-based re-

7
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Fig. 8. Installed height and viewing angle of video cameras in low and high positions.

Table 3
Hyperparameter settings of our pre-trained number-based model.
Hyperparameter Value

How similar do image and old track need to be considered the same person 0.8
How much IoU do track and image need to be considered for matching 0.8
How much time-steps dead tracks are kept and considered for reid 20

Table 4
Pedestrian count results and accuracy of 10 video clip samples.
Video Camera

position
Clip (mm:
ss)

Ground
truth

Prediction Accuracy Overall
accuracy

1 High 08:00–11:
00

10 10 100.0% 88.6%

2 High 02:00–05:
00

12 13 84.6%

3 High 06:10–09:
10

20 21 95.0%

4 High 04:00–07:
00

6 6 100.0%

5 Low 10:30–13:
30

5 5 100.0%

6 Low 00:20–03:
20

24 30 75.0%

7 Low 12:00–15:
00

21 25 70.8%

8 Low 01:50–04:
50

13 15 84.6%

9 Low 06:00–09:
00

16 18 87.5%

10 High 00:50–03:
50

26 29 88.4%

gressor for bounding box refinement in the tracking task (Azimi et al.,
2021). In other words, the detector is used not only for classification of
the target and background, but also for further correction and predic-
tion of the target using regression. The object detector was trained
based on a Faster R-CNN with ResNet-101 and Feature Pyramid Net-
works. Fig. 4 shows an example of pedestrian detection and counting
with the proposed model.

Previous studies have shown that the upper limit of a pedestrian
street's permissible density is 10–15 people per minute per street width

Table 5
Video image classification accuracy, precision, recall, and F1-Score of the ac-
tivity-based model in DLM-SVC model.
Overall accuracy Type # of Test samples Precision Recall F1-Score

88.7% Poor 287 92.4% 91.2% 0.91
Fair 312 84.5% 83.7% 0.84
Satisfactory 293 90.1% 89.1% 0.90
Good 305 67.8% 70.6% 0.69
Very Good 303 93.7% 96.6% 0.95

in meters (Gehl, 1987). Therefore, we quantified the number-based vi-
tality results of a video by Eq. (4) in a range of 0 to 5.

(4)

where is the pedestrian number-based street vitality of the site,
is the maximum number of people per minute (to ensure a more

comfortable activity experience of the street, in this study is 10),
is the total number of people passing through the video during the

survey time, and is the number of video minutes.

2.4.2. Activity-based model and classification hierarchy
For the activity-based vitality, we aim at integrating existing street

vitality classification metrics and propose a classification method based
on pedestrian activity using video images to refine the classification of
street vitality. This is not the first attempt to use pedestrian activity for
vitality evaluation. In the 1980s, Gehl classified pedestrian activities
into necessary activities, optional activities, and social activities and
found that spontaneous stay-over activities are the leading cause of ur-
ban vitality (Gehl, 1987). Many other scholars subsequently did empiri-
cal research that has shown some support for Gehl's theory (Sung & Lee,
2015; Wu et al., 2018). Following Gehl's classic work, we used five clas-
sifications: no activities, walking, standing, sitting, and other activities
(e.g., jogging and dog walking) (Fig. 5). The proportions of each activ-
ity type in each video image are the foundation of the classification cri-
teria. An AHP approach calculates weightings for each activity type us-
ing pairwise comparison by a questionnaire. AHP requires a number of
assessors to use pairwise comparisons to determine the relative impor-
tance of indicators, reducing potential decision errors with more reli-
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Fig. 9. Confusion matrix for the activity-based classification task.

Table 6
Video image classification accuracy, precision, recall, and F1-Score of activ-
ity-based model in DLM-SVC model for 200 image samples.
Overall accuracy Type # of Test samples Precision Recall F1-Score

85.8% Poor 62 93.7% 89.1% 0.91
Fair 38 82.1% 85.6% 0.84
Satisfactory 44 87.2% 78.9% 0.83
Good 18 64.5% 74.1% 0.69
Very Good 38 85.3% 95.3% 0.90

able results. One hundred thirteen students with an urban design educa-
tion background were involved in the questionnaire survey, the results
of which are presented in Table 1. Table 2 shows the characteristics of
the individuals who participated in the survey. In the questionnaire, re-
spondents were asked to consider indicator weights for activity types
and perform pairwise comparisons on each pair, including walking,
standing, sitting, and other activities. With these weights, an instant ac-
tivity-based street vitality result of each image could be obtained by Eq.
(5):

(5)

where is the instant activity-based street vitality of an image,
is the activity type, is the proportion of each activity type in an im-

age, and is the weight of each activity type.
To better classify the activity-based street vitality, we normalized

the instant activity-based street vitality results. Theoretically, we can

subdivide the categories of video images infinitely. Considering the
time and labor costs, we then ranked them into five subcategories,
namely P (poor), F (fair), S (satisfactory), G (good), and VG (very good),
scores from 1 to 5. If an image contains no activity, then it is assigned a
score of 0. The mean value of each instant activity-based street vitality
of the site during the survey time is the activity-based street vitality (Eq.
(6)). Therefore, we can build a corresponding benchmark dataset con-
taining video images to train the scene classifier for activity-based vital-
ity.

(6)

where is activity-based street vitality of the site, and the is
mean value of each the instant activity-based street vitality of the site
during the survey time.

Similar to the image scene understanding task, we propose a scene
classification method with DenseNet architecture based on a deep CNN
model that does not require statistical pedestrian behavior data (Zhu &
Newsam, 2017). Instead, the built DenseNet learns the deep features
automatically to support the classification task based on the classifica-
tion hierarchy and the corresponding benchmark dataset. Therefore, we
can obtain both pedestrian number-based street vitality and activity-
based street vitality. To quantify street vitality comprehensively, we
standardize and average the pedestrian number-based results and the
activity-based results on a continuous scale ranging from 0 to 5 (Eq.
(7)).

9
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Fig. 10. Confusion matrix for the activity-based classification task of 200 image samples.

Table 7
Street vitality evaluation results for 12 street segments.

Street segment
number

1 2 3 4 5 6 7 8 9 10 11 12

street vitality 0.9 1.7 0.8 0.7 2.2 2.8 3.6 4.2 4.5 4.3 3.7 2.4

Note: The street vitality results were obtained by Eqs. (4)–(7).

(7)

where is the street vitality of the site, the is number-based street
vitality of the site, and the is activity-based street vitality of the site.

2.5. Correlation analysis of the street built environment and street vitality

We use a linear regression model to analyze the relationship be-
tween the independent variables and street vitality to explore the effect
of the urban street built environment features on pedestrian activities.
In this paper, five street built environment features (street width, green-
ery, openness, transparency, and commercial density) are selected as
independent variables, and the street vitality is the dependent variable.
To compare the degree of influence of each spatial variable on street vi-
tality, we first standardize the five independent variables to eliminate
the effect of different units of covariates. The linear regression model's
expression is as follows:

where is the vitality in the street segment; , , , , and
represent the independent street vitality variables street width, green-
ery, openness, transparency, and commercial density, respectively;
and is the regression coefficient of the independent variables.

3. Experiments and results

In this section, we conducted an experimental study on the streets of
an anonymous commercial complex using our proposed methods. We
first introduce the study area and experimental preparations including
data collection and model training. Then we validate the DLM-SVC
model accuracy. Finally, we present the evaluation results of street built
environment and street vitality, and their correlation analysis results.

3.1. Study area

The proposed framework was implemented in the streets of an
anonymous commercial complex in Osaka, and 12 street segments were
selected in this area, which measured about 0.53 km2 (Figs. 6 and 7a).
The length of each street segment is around 10 m. From the field sur-
vey, the research area is a large commercial complex in the surrounding
living blocks. It has various space interface features, different street
width, transparency, and other built environment elements, and its cer-
tain typicality is suitable for correlation analysis. The pedestrian flow
here is complicated, and pedestrian behaviors and the street built envi-
ronment features are diverse. The streets are all pedestrian streets, and
the street width is mostly within 5–20 m. Compared with other street
blocks, commercial complexes pay more attention to improving the

10
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Fig. 11. Visualization results of street vitality evaluation in the study area.

construction of street built environment vitality for driving economic
and other vitalities.

In this study, streets with different features in the same commercial
complex are selected as research objects because these streets have the
same location conditions and thus have basically the same traffic condi-
tions, commercial classes, pedestrian types, and pedestrian access pur-
poses. This helps to weaken the influence of other macro variables re-
lated to commercial service level and pedestrian characteristics. Mean-
while, to reduce the influence of large pedestrian flows of commuting
purposes around tram stops on the evaluation of commercial vitality,
the commercial complexes around tram stops were not selected for the
study. In addition, to assimilate as much as possible the non-built envi-
ronment elements of each survey sample, the data collection was con-
ducted in the same time period with similar weather.

3.2. Experimental setup

3.2.1. Data collection
We first obtained road data from OpenStreetMap, 68 facility POI

data from Google Maps, and 12 panoramic camera street-view images
in the study area based on the methodology in Section 2.2.

In the pre-survey of the study area, we found that the level of pedes-
trian activity is low and fewer activity types are present in the morning.
In the afternoon, pedestrian activities increased significantly, but after
19:30, the pedestrian flow and the activity characteristics dropped

sharply. Based on this background and to ensure the camera's shooting
performance, our measurements were conducted during 12:00–18:00
on four weekends (10–11 and 24–25, October 2020; 9–11 and 17–18,
April 2021) and eight weekdays (20–23, October 2020; 5–8, April
2021) for a total of 16 days, when the climate and weather were similar
and suitable for outdoor activities.

We used four cameras to take six consecutive shots at 16 shooting
locations in 12 street segments based on the camera installation princi-
ples in Section 2.2, with each shot lasting 15 min per location at 1-hour
intervals. Because the pedestrian density in the study area is somewhat
low, low-position cameras (height: 1.5 m) were deployed at each street
segment for MOT and scene classification tasks. We also set up four
shooting locations for high-position cameras (height: 5.5 m) in areas
with second-floor pedestrian corridors to collect supplementary video
data for the MOT task to improve the accuracy of pedestrian counting.
During the experimental time, we acquired a total of 17,280 and
5760 min of video from 12 low-position cameras and 4 high-position
cameras at 16 shooting locations, respectively. Figs. 7b and 8 illustrate
the location, height, and viewing angle of shooting cameras.

3.2.2. DLM-SVC model training
The DLM-SVC model was trained as follows. We used the MOT17

dataset (Milan et al., 2016) in the pedestrian number-based model
training, and Table 3 shows the settings of our pre-trained number-

Table 8
Statistic results of street built environment variables for 12 street segments.
Street segment number Street width (m) Greenery Openness Transparency Commercial density (per 20 m)
1 6.0 0.151 0.367 0.427 0.12
2 6.5 0.123 0.125 0.297 0.04
3 5.1 0.140 0.382 0.287 0.03
4 3.2 0.383 0.152 0.196 0.05
5 3.2 0.392 0.182 0.231 0.20
6 10.5 0.218 0.245 0.774 0.11
7 10.3 0.223 0.231 0.732 0.15
8 10.5 0.208 0.243 0.671 0.06
9 15.6 0.124 0.318 0.701 0.18
10 16.2 0.131 0.327 0.742 0.23
11 12.5 0.262 0.224 0.647 0.17
12 10.8 0.227 0.206 0.704 0.06
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Table 9
Statistic results of the standardized street built environment variables for 12
street segments.
Street
segment
number

Standardized
street width
(m)

Standardized
street width
Greenery

Standardized
street width
Openness

Standardized
street width
Transparency

Standardized
street width
Commercial
density (per
10 m)

1 −0.97189 −0.71534 1.47440 −0.54844 −0.97189
2 −1.42045 −1.02749 −1.57956 −1.17158 −1.42045
3 −1.42045 −0.83797 1.66369 −1.21952 −1.42045
4 −0.68858 1.87103 −1.23883 −1.65572 −0.68858
5 −0.66497 1.97136 −0.86024 −1.06613 −0.66497
6 0.30298 0.03159 −0.06520 1.11486 0.30298
7 0.25576 0.08733 −0.24188 0.91354 0.25576
8 0.30298 −0.07989 −0.09044 0.62114 0.30298
9 1.50701 −1.01634 0.85603 0.76494 1.50701
10 1.64866 −0.93830 0.96961 0.96147 1.64866
11 0.77515 0.52210 −0.33021 0.50610 0.77515
12 0.37380 0.13192 −0.55737 0.77932 0.37380

based model. For the activity-based model training, we take one frame
every 20 s from the 17,280 min of video collected from the low-
position camera as a dataset. A total of 51,840 images were processed
from videos. From these, we randomly collected 7500 images and then
manually grouped them into five classes according to the classification
hierarchy in Section 2.4 and the number of labeled images in each class
was around 1500. 80% and 20% of these 7500 video images are used as
a training subset and a testing subset, respectively. The learned activity-
based model was tested on the testing subset after the training process.
Finally, the well-trained model successfully finished the prediction of
the remaining 44,340 pictures out of 51,840 images.

3.3. Accuracy verification of the DLM-SVC model

3.3.1. Pedestrian number-based model accuracy
Various classic metrics can comprehensively reflect the performance

of the MOT model, such as MOT Accuracy, Identification F1, and

Mostly Tracked trajectories. Because we focus on pedestrian counting
in the number-based model, we did not use classic metrics to validate
the number-based model accuracy. Instead, we randomly selected 10
video clip samples based on field surveys during 12:00–18:00 in the
study area and compared the predicted pedestrian counts from the pre-
trained model with manual statistics results (Kim, 2020). The choice of
10 video clip samples is the result of balancing the representativeness of
the sampled video and the collection cost of sampling video. The accu-
racy of number-based model counting results is 88.6%, as shown in
Table 4. Videos taken with high-position cameras and videos with a low
total number of pedestrians have a higher accuracy rate.

3.3.2. Activity-based model accuracy
Classification accuracy of the activity-based model. For the activity-

based model, the classification accuracy is shown in Table 5. The per-
centage of correct classifications is used as the classification accuracy
of the activity-based model. If the predicted result of a video image
from the trained model and the labeled type is consistent, it is consid-
ered as a correct classification; otherwise, it is considered incorrect.
The overall classification accuracy of the activity-based model is 88.7%
for five classification types. Compared with other subcategories, due to
the small test samples, the precision of the “good” subcategory is the
lowest (67.8%). Because of the sample's complexity and diversity, this
low-precision result is acceptable.

To assess the performance of the model in distinguishing pairs of
similar categories, the confusion matrices of the activity-based model
are presented in Fig. 9. The percentage of samples from one category
correctly categorized into another category by the model is represented
by the values in the matrix. Some categories are more easily misclassi-
fied into each other, especially when an image contains a large number
of different objects or overlapping objects.

Validation based on field survey data. To further validate the accu-
racy of the activity-based model, a random sample of 200 images
based on field surveys in the study area were selected and labeled
with activity-based vitality results. This sample size can balance time
cost and accuracy in the model validation (Hu et al., 2020; Zhang et
al., 2021c). The overall classification accuracy of the activity-based

Fig. 12. Scatter plot analysis of street vibrancy and street built environment variables.
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Table 10
Linear regression results of street vitality and street built environment vari-
ables.

Regression
coefficient

Standardization
coefficient

t P VIF R2

Constant 2.647 – 41.888 0.000 – 0.814
Street width 0.761 0.545 5.287 0.000*** 3.941
Greenery −0.278 −0.199 −3.210 0.002** 1.864
Openness −0.338 −0.242 −4.098 0.000*** 1.688
Transparency 0.372 0.266 2.918 0.004** 3.029
Commercial

density
0.239 0.171 2.616 0.010* 2.073

D-W Value: 1.800.
*p < 0.1, **p < 0.05, ***p < 0.001.

model is 85.8%. Table 6 shows the classification accuracy of the 200
image samples, and Fig. 10 presents the confusion matrix of the 200
image samples. These results are similar to those in Table 3 and Fig. 8
which proved the trained activity-based model's performance; that is,
the model's prediction results, are normally consistent with the verifi-
cation results based on random samples.

3.4. Street built environment and street vitality results

Table 7 and Fig. 11 show the street vitality results for the 12 street
segments evaluated by the DLM-SVC model, and Table 8 illustrates the
street built environment variables results of the proposed method. The
diversity of pedestrian activities is higher at segments 9 and 10, with a
higher proportion of rest and viewing. The road is broad, and the street
space is composed of a small circular square, an oriented, open, and
pleasant space. At the same time, the place lies at the traffic node of
three buildings in the commercial complex, where the flow of the
pedestrian movement is high, providing the possibility for people to see
and be seen with each other. The commercial form of street segments 4
and 5 is high-quality interior mega-commercial with low transparency
of 0.196 and 0.231, respectively. Although they are adjacent to a land-
scaped park and the greenery is high, 0.383 and 0.392, respectively,
the overall activity is low. This indicates that transparency is an impor-
tant variable in attracting activities for streets within commercial com-
plexes. Because small units of highly transparent commercial stores are
informative about their products, people may approach goods and busi-
nesses in transparent stores, but interior commercial forms visually
block people from engaging with goods and businesses.

3.5. Correlation analysis results

Due to the different magnitudes and units of the independent vari-
ables in this study, we first standardized the raw data of street built en-
vironment variables (Table 9). After organizing the above data and data
of the average vitality values per hour into five scatter plots of 72 points
each (Fig. 12), we found the following: (1) The fitted line in the scatter
plots of street width, commercial density, and street vitality showed a
significant increasing trend, with street vitality decreasing as the street
width increased. (2) Transparency has a very strong influence on street
vitality, and the fitted line shows a significant upward trend. (3) Open-
ness, greenery, and commercial density all show a steady trend with the
fitted line of the scatter plot of vitality value.

A linear regression model was built to compute the weight coeffi-
cients of each variable so that the effect of these five selected built-
environment variables on street vitality could be compared. In the re-
gression model, mean vitality values for each hour of each day on 12
street segments during the experimental time and standardized street
environment variable data comprised 1152 sets of samples. The regres-
sion results are shown in Table 10. The fitting degree (R2 value) of the
model was 0.814, which means that these five selected street built envi-

ronment variables can explain 81.4% of the variation in street vitality.
The model passed the F-test (F = 78.757, p<0.001), which means that
at least one of the features street width, greenery, openness, and trans-
parency has an effect on vitality. All the variance inflation factor (VIF)
values in the model are less than 5 and sample number is 1152, which
means that there is no cointegration problem (O'Brien, 2007). The Dur-
ban–Watson (D-W) value is around 2, which means that the model has
no autocorrelation and the sample data have no correlation; thus, the
model is good. The smaller the P-value is, the more significant the cor-
relation is. The regression results show that street width has a signifi-
cant positive effect on street vitality, followed by transparency with
positive correlation. Meanwhile, openness and greenery have a nega-
tive relationship with street vitality. Commercial density has a positive
impact on street vitality.

4. Discussion

This study investigated a method to quantitatively analyze the asso-
ciation between street vitality level and the street built environment
features by quantitative measurement of the vitality-related street built
environment features (street width, greenery, openness, transparency,
and commercial density) and a vitality evaluation framework based on
proposed DLM-SVC model. The street built environment variables were
measured by GIS analysis and semantic segmentation using street view
images. The DLM-SVC model could analyze street vitality based on the
intensity of pedestrian behavior and pedestrian volume using video-
image data. The linear regression model results with raw data standard-
ization can represent the relationship between street vitality and street
built environment variables in the experimental area. Street view im-
ages and video images were reliable, efficient and cost-effective data
sources in analyzing street built environment and pedestrian activities.
In the experiments, we carefully selected 16 camera locations in public
spaces that did not interfere with pedestrian activity, and all shots were
taken in compliance with local laws.

In general, the main contributions are listed below.

• Compared with the methods measured through traditional
manual on-site surveys, in this paper, we developed an automatic
measurement method for street built environment variable
evaluation and pedestrian activity-based street vitality evaluation
using state-of-the-art deep learning models, street view image,
and video data, while combining regression models to analyze
the relationship between street vitality and street built
environment variables, greatly improving the efficiency of data
analysis.

• We applied our method to a commercial complex. The validation
results show that our method is effective and scalable. In our
proposed DLM-SVC model, both the quantity-based and activity-
based sub-models have good accuracy.

• We built a tailored video image dataset for training a scene
classifier for street vitality in the activity-based sub-model of the
DLM-SVC model.

Our research provides feasibility and reliability by using deep learn-
ing methods to explore the relationship between typical street built en-
vironment features and street vitality. Most of the findings are consis-
tent with previous studies (Ewing et al., 2015; Hamidi & Moazzeni,
2019), and the findings suggest that:

• Street width is one of the primary variables affecting street
activity. High-vitality pedestrian activities are spread over streets
15–20 m wide, which means stay-over activities need a certain
street width to avoid adjacent pedestrian flow.

• The transparency of the building interface along the street has a
potentially beneficial role in pedestrian activities (Fig. 13a).
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Fig. 13. Field survey images of street segments: (a) Low vitality with high greenery and low transparency in segment 4; (b) Poorly placed greenery in segment 12;
(c) High openness but centripetal space in segment 10; (d) High vitality with high greenery but centripetal-free space in segment 1.

However, when the transparency exceeds 70%, the street
dynamics no longer increases significantly. This suggests that a
transparent and open ground floor interface can, on the one hand,
attract commercial stay-over activities. Still, on the other hand, it
weakens the boundary effect of the ground floor and discourages
certain social stay-over activities that require a sense of enclosure
from boundaries.

• The effect of greenery and openness on street vitality shows a
degree of negative correlation and may not be a simple linear
relationship. While a certain amount of greenery is beneficial to
social activities, such as sitting, poorly placed greenery may
obstruct street commercial interfaces and signs, causing
commercial activities to suffer (Fig. 13b).

• Openness shows a potentially significant negative effect on street
vitality. Open and centripetal-free space can cause pedestrians to
lose their sense of security and enclosure, which is also detrimental
to the boundary effect and pedestrian activities (Fig. 13c). In
addition, in this experiment, the larger openness tends to suggest
that the street segment has a discordant street height to width ratio
and is dominated by traffic functions (Fig. 13d).

• Among the five examined variables, commercial density shows
the weakest impact on street vitality, which may be because the
study area is located in a commercial complex where
commercial distribution is dense and less differentiated. Further
research can be conducted to refine this association by selecting
different commercial complex streets and expanding the study
area.

Based on the previous analysis, we could find some suitable values
of street built environment features to maximize street vitality in the
study area and propose some practical suggestions concisely and effec-
tively for architects and urban planners. These urban street design rec-
ommendations are to a certain extent applicable to urban streets with
similar characteristics as the experimental study area. Since there were
only 12 street segments in the experiment, it is difficult to generalize
the existing findings (15–20 m wide, 70% of transparency, etc.) to the
usual cases. However, more streets can be studied using our methodol-

ogy, thus providing more site-specific suggestions for street design in
terms of improving vitality rather than one-size-fits-all theorems.

It is important to note that in practice, these five street built envi-
ronment variables are mutually influential in some locations, and there
might be some autocorrelation phenomena. For example, street seg-
ments with many storefronts are often those with a wide street and high
interface penetration. It is the effective overlapping and complementar-
ity of these elements together that contributes to a vibrant street life. In
addition, the same street built environment features may have different
effects on different activity types. Therefore, while the overall control
of the street interface attribute is important, the space design of each
node in the street segment and the rational layout of street facilities
need to be considered in detail.

Compared with traditional methods, such as the PSPL survey, our
proposed framework is transferable and efficient and is suitable for this
big data era. First, the DLM-SVC model is easier to transfer to other sce-
narios with the model training process. Second, although the accuracy
of the traditional methods is higher, it relies heavily on labor-intensive
acquisition of field survey data. Our methods could analyze a large
number of scenes and achieve complex calculations with big data. Fur-
thermore, with the development of smart cities, our proposed model
has data-driven potential, and the accuracy of the model could be fur-
ther improved by an updated large training set of street-level pedestrian
behavior data provided from Internet of Things devices.

This study has some limitations. First, the current activity-based
classification model in the DLM-SVC model does not consider the
video's temporal order. The accuracy of the street vitality evaluation
can be further improved by expanding the training set and adding a
model with temporal sequencing. Using an action recognition model is
another choice to obtain precise activity-based vitality results rather
than the classified results. Second, the selected street built environment
variables are not all-inclusive. It must be acknowledged that many vari-
ables affect street vitality, such as building façade details, merchandise
display content, and street furniture. These variables can have different
degrees of influence but are limited by data quantification and data col-
lection. Future research could include more relevant environment vari-
ables, such as street continuity, to comprehensively explore what kind
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of space can attract people's activities. In addition, although our ap-
proach could be transferred to other streets, the current experimental
study was limited to buildings in a commercial complex. If the method
is applied to other streets, the correlation results may be different and
need further discussion.

5. Conclusions

Few studies have applied the deep learning approach to explore the
association between street vitality and the street built environment.
Even fewer studies have evaluated street vitality with video image data.
Some previous investigations have used the proportion of activity type
as an indicator to infer a street's vitality. Therefore, the proportion of
activity type in a video image is a suitable and similar evaluation of the
activity-based vitality.

This article established a research framework to quantify the rela-
tionship between the built environment and street vitality and vali-
dated our approach with an experiment in a commercial complex,
which can be referenced as a toolbox for further studies and practical
projects with other types of streets. Specifically, we use MOT and scene
segmentation to build a DLM-SVC model that automatically evaluates
street vitality based on the number of people and activities in the street
from video data, then propose to quantify the elements of the built envi-
ronment using GIS analysis and semantic segmentation, and finally, in-
troduce these variables into a regression model. With the deep learning
algorithms and urban digital data, our method is more data-driven and
can be applied to the streets of other cities. The validation results indi-
cate that the proposed DLM-SVC model is feasible and reliable for clas-
sifying street vitality and can be applied to study the influence of street
built environment variables on street vitality. The revealed associations
between street vitality and the street built environment in an example
commercial complex show that street width, greenery, openness and
transparency are significant variables in improving street vitality.
These results can help put forward opinions and suggestions for urban
street planning and street-level architectural design in similar street
blocks.
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